Tóm tắt:
We study the problem of multi-class image classification with large number of classes, of which the one-vs-all based approach is prohibitive in practical applications. Recent state-of-the-art approaches rely on label tree to reduce classification complexity. However, building optimal tree structures and learning precise classifiers to optimize tree loss is challenging. In this paper, we introduce a novel approach using latent classifiers that can achieve comparable speed but better performance. The key idea is that instead of using C one-vs-all classifiers (C is the number of classes) to generate the score matrix for label prediction, a much smaller number of classifiers are used. These classifiers, called latent classifiers, are generated by analyzing the correlation among classes and removing redundancy. Experiments on several large datasets including ImageNet-1K, SUN-397, and Caltech-256 show the efficiency of our approach.
Tác giả: Tien-Dung Mai; Thanh Duc Ngo; Duy-Dinh Le; Duc Anh Duong; Kiem Hoang; Shin’ichi Satoh
Từ khóa: Testing, Matrix decomposition, Training, Complexity theory, Encoding, Sparse matrices, Correlation
Tạp chí: 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP)
Chỉ số: Electronic ISBN:978-1-4673-7478-1; USB ISBN:978-1-4673-7477-4; Thomson ISI, EI, Scorpus.
SAIGON INTERNATIONAL UNIVERSITY (SIU) THAODIEN CAMPUS
Lewis Hall: 8C Tống Hữu Định, Phường Thảo Điền, TP.Thủ Đức, TPHCM, Việt Nam
Eliot Hall: 7, 9 Tống Hữu Định, Phường Thảo Điền, TP.Thủ Đức, TPHCM, Việt Nam
McCarthy Hall: 10 Tống Hữu Định, Phường Thảo Điền, TP.Thủ Đức, TPHCM, Việt Nam
Fleming Hall: 16 Tống Hữu Định, Phường Thảo Điền, TP.Thủ Đức, TPHCM, Việt Nam
Đông A Hall: 18 Tống Hữu Định, Phường Thảo Điền, TP.Thủ Đức, TPHCM, Việt Nam
SIU GRADUATE SCHOOL
11 Tống Hữu Định, Phường Thảo Điền, TP.Thủ Đức, TPHCM, Việt Nam
226A Pasteur, Phường Võ Thị Sáu, Quận 3, TPHCM, Việt Nam
Hotline: 0933180765; 0985610648
Tel: 028.36203932 (ext. 200)
Email: siug@siu.edu.vn